当前位置:首页 > ZBLOG > 正文

zblog色彩科学(色彩科学是什么)

本篇文章给大家谈谈zblog色彩科学,以及色彩科学是什么对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

绘画色彩理论

经典色彩理论与绘画色彩认识——郭健濂

解开色彩之谜,首先给予眼睛绝对的优先权。歌德在他的著作《色彩理论》中,开篇就说:“我们首先了解这些色彩,因为它们很大程度上完全属于对象——眼睛本身。它们是所有学说的基础,打开我们色彩和谐的视野,基于此,所有不同的观点得以存在。”1 对于画家来说,色彩所关乎的问题关键在于两点:一是可见性世界的色彩;二是艺术家建构的色彩世界。第一个问题涉及到色彩如何成为可见,这就是色彩理论研究给出的答案。绘画色彩发展的重要转向都与色彩理论的研究密切相关。从古希腊开始,人类就开始致力于探索可见性世界的色彩奥秘,形形色色的色彩理论给出了不同的答案。色彩理论家从视觉经验和科学实验的两个维度中,系统阐述了各种色彩现象的起因、规律以及色彩关系的种种原理。他们大都以色轮图表的配置形式来体现色彩与色彩之间的关系模式,以此诠释他们对色彩的认识。这些知识论意义上的色彩经验不断塑造和改变着人类的色彩感知,对绘画色彩表现在思想和技术上产生了重要影响。同时,艺术家长期以来也在寻找一种理论框架,帮助他们来理解和处理色彩的复杂性,即如何利用调色盘中的颜料来混合所需的色彩,色彩之间又是如何在视觉上相互作用的。我们选取几个具有代表性的案例来剖析色彩理论研究与绘画色彩之间的关联。

一.歌德与透纳

哥德(Goethe)的著作《色彩理论》(“Theory Of Colours”)影响深远,以至于所有的关于色彩的书籍都不忘提及它,参考它。在书中,哥德颂扬了亚里士多德和达芬奇的观察结果。与牛顿相反,哥德将注意力转向视觉色彩,将发生色彩的各种条件进行分类,从中考察色彩的永恒性。他认为,光在视觉上通过色彩来表现自己,这是符合视觉规律的。也就是说,对于视觉而言,色彩是一种基本的自然现象。基于这些概念歌德定义了三类色彩:生理色彩、物理色彩和化学色彩。他将全部色彩概括在这三种类型之中。第一是属于眼睛的色,称为生理学色;第二是属于各种物质的色名为化学色;第三是介于两者之间,是通过镜片、棱镜等媒介看到的色,将其定为物理学色。在歌德看来,牛顿只是看见了第三种色而已,没有研究和解释全部色彩现象。

没有哪个人能像哥德这样如些广泛、深入地对色彩进行探讨。而实际上,哥

德只对生理色彩感兴趣, 他为那些始终对视觉现象有兴趣的艺术家们提供了详细的色彩理论知识。生理色彩是视觉作用和反作用的结果,因此它是色彩瞬间的不可领会的一种形象,只存在于片刻的空间之中。生理色彩曾被无数的研究者研究过:“波义耳称它为‘补充色’,布封叫它‘偶然的色彩’,还有些人分别给它冠以‘奇幻的想像’、‘表面的色彩’和‘瞬间的色彩’的名字,而罗伯特·达尔文则认为它是‘视觉的魔怪’。”2 而正是这种不可捉摸和难以把握的视觉现象引起歌德的极大关注。在他看来,所有的图像都在视网膜上占据着一定的位置,它在视觉中的反映跟最明亮的色彩与最黑暗的色彩息息相关,在这两极之间人们得以看到各种中间色。他通过实验观察发现:

“让一小块亮色纸片或丝绸置于中等亮度的白表面前,让观测者凝视该有色物体,然后把该物体移开而眼睛不动,另一种色彩的光谱则将于白表面上显现。当眼睛直视白表面的另一部分时,有色纸也可以离开其位置,相同的光谱也会在那出现,因为它现在来自属于眼睛的景像。”3

哥德从观察中总结出黄色和青色,红色和绿色以及橙色和紫色三组对比色,并组成色相环。他对于色彩关系之间的模式提出了两种建议:一是,以圆形为基础(图1),并辅以被两个交迭的表示三原色和三间色的三角形所叠加用来表示互补色的线条。二是,以三角形为基础(图2),红、蓝、黄三原色位于三角形内部的最远的点上,而绿色、橙色和紫色三间色则位于三角形内部中间。在理论上,三间色的两色在相邻的原色的帮助下的混合就可生成明暗较低的第三色---复色。

根据色彩在光亮与黑暗的两极之间,光明孕育了黄色,阴暗产生了蓝色。哥德考虑一个整体的视线,把色彩由两边决定。它所显现的对比我们可以称之为极性(Polarity),这我们可以以“ +” ( Plus ) 和“ — ”(Minus)符号来表示。表示一种涌出与退隐的视觉感受。

+ —

黄 蓝

行为 否定

光 阴影

明度 暗度

为强度 弱度

暖 冷

邻近 距离

排斥 吸引

与酸和亲和力 与碱之亲和力 4

纯亮黄色是正极的代表,它是愉悦的、欢快,给人以柔和的感觉。但是如果

它与绿色结合,转为像硫磺一样的颜色,那么会给人以不快、甚至庸俗的印象。而赤黄色则较黄色具有更多的能量,更充满生气,而且根据色彩比例的不同,会

造成不同的奇妙的效果。蓝色作为负色色系的代表,被歌德认为是一种罕见的、

不易表达的色彩。它是激情与平静的结合,同时,它能使事物变得凄凉。对于歌

德来说,一种充斥着蓝色的事物是完全不能让人接受的,正因为如此,他建议人们在运用蓝色时应尽量少用或对它进行稀释,以免给人不快的感觉。

黄色和蓝色能组成绿色,如果两色的比例适当,那么绿色能成为“休憩”和“积极的满足”的代名词,如果两者比例失调,则会让人反感。这就是说,这些特定的对比原则结合起来,各自的性质并不会互相破坏。因为如果在这种混合中成分完美平衡以致于两方都不能被明显区分是,混合物则再一次获得独特的个性;它显示为其自身的一种性质,以致我们不能把其认为是混合物,那么,这种混合色即是绿色。

英国画家透纳(Turner)1843年画了《光色---洪水后的早晨---记创世纪的摩西》(图3)和《阴影与黑暗---洪水天的傍晚》(图4),从这两幅作品的标题和内容来看,透纳正是用歌德的色彩理论画了这两幅对照性作品。歌德的色彩理论的特征就是将一切色彩看作是含有两极的色。比如有些特定色彩,红和黄,带来正面效果,快乐感觉;而其他的,特别蓝和紫,暗示了相反的情感。他运用了歌德的两极色描绘了洪水前后的情 景,《阳光和色彩---洪水后的早晨---记创世纪的 摩西》是以红、黄、绿色来画的,表现了洪水退后早晨的瞬间。《阴影与黑暗---洪水天的傍晚》则是使用藏青和紫色巧妙地定格了洪水爆发一瞬间的永恒。透纳认为色彩是光本身生发出来的物质。他把光与影分离,将色彩看作光的替代物捕捉光的聚集和离散。

可以说透纳有效运用了哥德色环中的对比色。他在色彩里隐藏了风景的主题,这一主题就是色彩在这正负两极中的情感寓意。他的作品可以说是歌德色彩理论的经典诠释。透纳对歌德的色彩理论高度颂扬,并且,他根据哥德的色彩圆环和三角模式画了一个属于他的色轮模式(图5)。

事实上,歌德想要创建的是一种真正对画有启示意义的色彩理论,它不仅讲究色彩的美学效果,更注重它在心理上的含义。哥德对生理色彩的揭示,使画家对颜色的选择更加开放和自由;色彩在记忆与视觉,幻想与情感间游移。他对自然光色现象的研究,不仅促进了当时画家在视觉经验上对自然真实色彩的探寻,而且一直影响着19世纪乃至20世纪艺术家对色彩的看法。

二.谢夫勒尔与印象派

谢夫勒尔( Chevreul )是一位有名望的化学家,同时身为巴黎哥白林染织厂挂毯染色的染坊主管,1839年他出版了《色彩的谐调和对比的规则》(“The principles of harmony and contrast of colors and their applications to the arts”)一书。他发明了一个有着细致分层的二维色轮。在染坊的工作经历中,证实了红、黄、蓝三原色和的橙、绿、紫三间色的作用。他的贡献是关于色彩之间在视觉上的相互作用规则的阐述:实时对比、连续对比和视觉上的色彩混合。总结出了完美使用色彩的协调规则。

眼睛同时见到两种相邻的色彩时,它们会显示出很大的差异,这是由于色彩的光学构成和色调的强度产生了变化(图6)。谢夫勒尔就是基于这一色彩视觉原理将其称为色彩的实时并置对比及色调的对比。他用字母总结了对比法则的原理:“对于两个相邻色彩,O和P,当O的补色,加入P时,或当P的补色加入O时,它们两者会尽可能地不同:结果,通过并置O和P,当P的光线被单独看见时会被O反射,如同O的射线在单独看见时被P反射,活跃的射线会同O和P的并置而停止;因为在该例子里,每种色彩都失去了相似性。”5

色彩之间的相互作用和渗透,改变了自身的光谱结构,从而显示出与原来不相符的现象。他把这种现象用公式进行了演示:

O的色条置于比a更白的B处

P的色条置于比a1 更白的B1处

a的补色置于C处

a1 的补色置于C1

两种色条分开时是:

O的色彩= a+B

P的色彩= a1+B1

通过对比,它们变成:

O的色彩= a+B +C1

P的色彩= a1 +B1+C 6

谢夫勒尔据色彩实时对比法则和并置色条边缘不可感知的逐渐更改,他建议我们可以拿圆圈纸片或其他材料,涂上红、绿、橙、蓝、泛绿的黄、紫罗兰、大约1.5英寸;把每个圆圈分别放在白纸上,接着拿一点点洗过的颜色,在色环圆围染上色彩的补色,从中心向外越来越微弱。这样,通过色彩圆圈空间即可获得色彩并置的可感形式,向那些没有学过物理却对该效果有兴趣的人展示其效果。

红圆圈环绕的色彩是补色绿

橙圆圈环绕的色彩是补色蓝

蓝圆圈环绕的色彩是补色橙

泛绿的黄圆圈环绕的色彩是补色紫罗兰

紫罗兰圆圈环绕的色彩是补色泛绿的黄

我们可以看出:这种并置对比现象的结果会使颜色的强度发生改变,深的显得更深,浅的显得更浅;也就是说,深的色彩失去多少白光,浅的颜色就反射多少白光。谢夫勒经过观测实验证明:邻近色的改变和它们的互补色,对其自身的改变一样明确。

谢夫勒尔将他的色彩研究应用于绘画装饰艺术和服装设计等各个艺术门类。他的色彩谐调法则被翻译成德文和英文,并且成为19世纪最为广泛的色彩应用手册,他的研究为画家在运用色彩的并置、对比来再现自然光色现象中的景象提供了宽广而有效的依据。使色彩在西方绘画长久以来被忽视、被压制的境况中解救出来,突显出色彩在造型上的表现价值。色彩的并置对比协调法则在印象派画家的绘画实践中得到完美的体现。

印象派画家看到了色彩对比的价值,即不再依靠素描的明暗法则来再现对象,色彩有自身的规则,而且它完全可以承担起素描再现光的功能从谢夫勒的对比原则中,他们获得了一种经验:当人们的眼睛同时看到带有不同颜色的物体时,它们在物理构成上和色调的亮度上表现出来的变化现象都统统包含在颜色的同时对比之中。我们熟知,印象派绘画的色彩运用最显著的特征就是大胆地并置多种互补色,如蓝色与黄色,红色与绿色,棕色与紫罗兰色等,这些色彩元素之间同时对比而互相增强,画面形成为一个织物,一个飘荡着的,彩色面光幕。莫奈《里昂大教堂》(图 8-Ⅰ.Ⅱ.Ⅲ)的系列作品就是有效运用了不同的对比色来表现不同时间的阳光。教堂本身的色彩与造型被光消解了,在不同时刻的特殊光源作用下,呈现出相异的黄色与蓝色,紫色与橙色倾向的色彩对比调谐。教堂形体的表现完全通过纯色与白色相互增强而并置构成。亮色的白色和黄色叠置与阴影处鲜明的黄色反光,形成了一种特殊的光感。教堂实存的坚固造型与固有色彩不是描模的目的,一切都留给了色彩对光色现象的模拟。

其实,这种带色的阴影和反光以及纯色和白色在色彩分解中的作用,在德拉克洛瓦的色彩实践中,已是不言而喻的事了。歌德和德拉克洛瓦早就注意到,在日落时的红色光照耀下黄色的衣饰会显出紫罗兰色的暗部和淡绿色的阴影。歌德在《色彩的理论》中论及生理色彩时就发现,视觉在某一种色彩的作用下,都会呈现出其相反的效果。也就是说,观看一种强色一段时间,就会产生补足这一色彩的互补色。谢夫勒在这方面的 对比规律做了更为系统的观测和总结。这证明当时的画家绝对有可能看到这种视觉现象,只不过,强大的素描明暗传统克制了他们对这种色彩视觉法则的探究。另一方面,色彩现象总是如此稍纵即逝,而难以捕捉,以至于许多色彩研究者将视觉对色彩的反应分别冠以“视觉幻想”、“表面的色彩”或“瞬间的色彩”的名字,达尔文甚至认为它是“视觉的魔怪”。所以,色彩在绘画中一直被认为是不稳定、偶然性的因素,无法给出确定性的建构。

印象派恰恰是捕捉到了那难以把握的色彩瞬间。我们看莫奈《里昂大教堂》系列中表现午间日光的画面(图8-Ⅱ),他利用强烈的蓝-橙对比,再现出正午阳光的光芒所造成令人目眩的感觉。这在以前简直就是不可能的挑战。19世纪的科学家布吕克(Brüke)就认为:“多一点诗意,少一点正午的阳光,对我们现代的风景画家会大有好处。”7他懂得颜色的纯度无论如何也无法企及光色的强度。所以,画家不应当企图去画充满阳光的场面。而印象派绘画借助谢夫勒的色彩理论,找到了色彩自身的对比规则纯粹模拟光色现象的可能性,却是通过淡化形体结构与轮廓,有意识融合物象的造型与背景,定格了转瞬即逝的光色视觉感受。色彩表现从素描的桎硞中释放出来,它不再附属于明暗造型的需要,它可以论点、线、面,这些色彩元素构织着色光的纯粹视觉可视性。

三.洛德与修拉

美国科学家、艺术家洛德(Rood)在谢夫勒色彩理论的基础上,通过马克斯威尔(Maxwell)所创造的圆盘进行试验,更为动态地展示和分析了色光混合和互补色和谐。洛德区分了有色光混合和颜料混合的区别,正如我们长久以来所认为的那样,光线混合的色彩效果是无法从混合调色盘中的颜料获得。但是,洛德发现,在某种情况下颜料混合可以在视觉上达到与混合有色光几乎一样的效果,这种视觉混合原理成为点彩派修拉的科学用色依据。

马克斯威尔用于混合光线色彩的圆盘装置非常简单。如(图9),随意取一个圆形盘状物,在上面涂上不同的色彩,如红色和绿色,然后快速转动圆盘,这两种色彩就会在视觉中混合,整个圆盘即产生一种全新的调和色。实验得出结论,即视觉上色光混合产生的色彩透明度和亮度也远不及有色光混合强烈,而颜料在调色盘上调和与有色光混合产生的色彩效果差别就更为显著了。

通过对比有色光混合和颜料混合的不同结果,洛德发现:“……假设我们混合干粉状的铬黄和群青,如果我们在纸上混合,则会产生暗绿色。即使是现代强有力的显微镜也无法把两种颜色区分开。但我们知道应该有一个表面层,是由黄和绿颗粒把光逆进我们的眼睛,造成真正的混合,结果带来泛黄的灰色。这和混合两种不同的有色光的结果远远不同。”8 所以说,混合两种颜料是获得不同颜色的吸收光线的效果,即减彩色调,而光色混合才是一种真正的混合光线,它带来增彩效应。

洛德创造了一个复合式圆盘,用以比较这两种不同色彩混合的差别(表1)。由此来确证在哪些情况下有色光混合的色彩效果可以与颜料混合相一致。他用两种水彩颜料——铬黄和群青分别涂在两个圆盘上(图10)。接着,在调色盘上洒上等量的颜料水滴加以混合,第三个小点的圆盘涂上该混合色。这些盘子放置在旋转装置上,铬黄和群青各据圆盘的一半,小一点的,居于中心。当整个圆盘旋转之时,外圈大圆盘产生的光线混合色彩与内圈小圆盘的调色盘混合的区别就显而易见了。实验结果如下:“大圆盘变成红-紫色调,而边上的小圆盘则变成灰色,颜色阴暗,其真实色彩是暗紫罗兰。我们会注意到,这颜色不仅更暗,不饱和而且它从红紫变成紫罗兰。”9 他为了确定颜色被调色盘变暗多少,又是如何被改变的,他在铬黄和群青圆盘中复合了一个黑圆盘。这样,在快速旋转中,许多黑色就混入了红紫色中。他发现要使大小圆盘的颜色相一致是不可能的,大圆盘的色调总是太过饱和。于是,他又在大圆盘上加上一些白色,最终使两者颜色一致。

图表1

颜料

通过机械

调色板上

紫罗兰(紫红)

黄绿(胡克绿)

黄灰色

褐色

紫罗兰(紫红)

黄色(藤黄)

泛黄灰色

索菲亚灰色

紫罗兰(紫红)

绿色(普蓝和藤黄)

绿灰色

灰色

紫罗兰(紫红)

普蓝

蓝灰色

蓝灰色

紫罗兰(紫红)

深红

粉紫色

暗红紫色

藤黄

普蓝

泛绿灰色

蓝绿色

深红

胡克绿

黄橙色(肉色)

砖红色

深红

绿

泛红色(肉色)

暗红色

按照洛德的实验以及他所列出的调色盘和与旋转调和的等值转换公式(图表2),我们可以看到两种颜色旋转调和要达到与调色盘混合的相似,都必须添加不同比例黑色或白色,而且在超过一半的例子里,都要介入第三种颜色的并置调和,才能制造出相同的色彩。这样,通过并置多种色彩在视觉上的混合可以获得与颜料直接混合的一致;而这种效果有效避免了多种颜料混合的灰暗和不透明性,带来了色光的颤动。修拉点彩,分色的画法正是依据这一科学色彩理论而确立的。这种视觉上的混合是通过眼睛从一定的距离处,对一些彩色的线条或是那些间隔距离非常近的彩色小色点的注视作用而成的。这是艺术家们唯一能够用来混合不是单纯色素的光线色彩。

图表2

在调色盘调和

通过旋转调和

50紫罗兰+50霍克绿

21紫罗兰+22.5霍克绿+4铬黄+52.5黑

50紫罗兰+50藤黄

54紫罗兰+20藤黄+26黑

50紫罗兰+50绿

50紫罗兰+18绿+32黑

50紫罗兰+50普蓝

47紫罗兰+49普蓝+4黑

50紫罗兰+50猩红

36紫罗兰+37猩红+8群青+19黑

50藤黄+50普蓝

12黄(藤黄)+42普蓝+41绿+4黑

50铬黄+50群青

21铬黄+20群青+51黑+9白

50霍克绿+50猩红

23.5黄绿(霍克绿)+8猩红+52朱砂+16黑

50猩红+50绿

50猩红+24绿+26黑

洛德把在圆盘实验中所确定的互为和谐的补色,以一一对列的色彩形式构成一个色轮图表(图11)显然,这已大大超出了谢夫勒尔的静态图标的分类:红对绿、黄对紫、橙对蓝等范围。视觉混合需要色彩的并置对比,而所有对比色都容易产生突兀的感觉。所以,洛德通过一条穿过黄绿到紫罗兰的线把图分为两半,左边一半是暖色,右边一半是是冷色。这样,我们发现作为互补色的红和蓝绿或紫和黄绿,其位置也符合要求。因而,基于双重原因,对比变得具有过度性,也并不减弱对比的强度。有绘画经验的人都清楚,有些色彩单独存在时是如此无趣和暗淡,一旦与恰当的色彩放置一起却呈现出丰富和灿烂的色感。同时,从另一方面来说,最艳丽的色彩也能够通过其布局来产生最为压抑的色彩感。所以,色彩可能因为有害的对比而显得暗哑糟糕,或另一方面,却因为过多有益的对比而显得粗糙,僵死。洛德认为画家应该清楚哪些颜色互为补色以及它们结合的效果。

洛德在色彩混合的实验研究给予了修拉用色的科学依据。他的实验证明:来自调色盘的颜色不足以引领我们分解或研究自然界中的有色光的混合,所以,他认为应遵守有色光混合的法则而非那些颜料混合的法则。修拉从中获得重要启示:要使调色盘中的颜色符合有色光混合的效果,就必须避免多种颜色的混合,而是通过纯色并置的方法来体现色光混合的透明度和亮度。这是一个复杂的过程,远非纯色的并置那么简单。

我们看到,从洛德提供的等值代表中,每两种颜色混合的效果要通过色光的旋转调和获得,必须在并置两种颜色的基础上,同时放置另一种色彩和不同比重的黑或白。况且,绘画本身是静态的;要获得这中种视觉色光效果,首先得在调色盘上预先准备好不同纯度的颜色。从德拉克洛瓦对有色物体的色调分解中,我们知道物体表面的颜色取决于三种色调。洛德对此做了更科学的解释,“第一,其在白光下呈现之颜色——即是它的固有之色,称为“固有色”;第二,它本身反射的光线和有色光一起传递给其的色彩这是另外应添加的;第三,穿过表面后反射并被吸收一部分的有色光制造的效果。

以上来源于网络资料

颜色与数学之间的关系是怎样体现的?人眼感知色彩的数学原理是什么?

颜色与数学之间的关系:给任何一个东西建立数学模型都要寻找其中的“不变性”,再用数据描述它,色彩科学并没有说明色彩的本质,但是用数学描述代替了色彩。

人眼感知色彩的数学原理是:视觉信号和数字信号的转换过程,人眼看到大自然所有的色彩都是通过太阳光(白光)做反射和减色识别的过程。 太阳光照在叶子上,我们可以看到叶子是绿色是因为叶子吸收了绿色以外的可见色光,把绿色反射到人眼。

色彩搭配

天蓝色与粉红色:温馨的搭配,对比鲜明,两个都不是极端的色彩,所以不会给视觉带来压力,反而增添了一份愉快之感,是最丰富多彩的搭配,用途比较广泛。如果用粉红色的上衣搭配天蓝色的牛仔裤,会显得朴素大方。

绿色和粉红色/红色:和谐的搭配,大自然的颜色,就像粉红色的花朵和浅绿色的草地,让人的心情感到格外放松。可以用在卧室里,给卧室增添一份清新、宁静。如果和红色搭配会更加生动、饱满。

科普|色彩心理学:心理和生理

心理和生理

对色彩与人的心理情绪关系的科学研究发现,色彩对人的心理和生理都会产生影响。国外科学家研究发现:在红光的照射下,人们的脑电波和皮肤电活动都会发生改变。听觉感受性下降,握力增加。同一物体在红光下看要比在蓝光下看显得巨大些。在红光下工作的人比一般工人力量大,可是工作效率反而低。

1、粉红色具有安抚情绪的效果

粉红色象征健康,是美国人常用的颜色,也是女性最喜欢的色彩,具有放松和安抚情绪的效果。有报告称,在美国西雅图的海军禁闭所、加利福尼亚州圣贝纳迪诺市青年之家、洛杉矶退伍军人医院的精神病房、南布朗克斯收容好动症儿童学校等处,都观察到了粉红色安定情绪的明显效果。例如把一个狂燥的病人或罪犯单独关在一间墙壁为粉红色的房间内,被关者很快就安静下来;一群小学生在内壁为粉红色的教室里,心率和血压有下降的趋势。

还有研究报告指出:在粉红色的环境中小睡一会儿,能使人感到肌肉软弱无力,而在蓝色中停留几秒钟,即可恢复。有人提出粉红色影响心理和生理的作用机制是:粉红色光刺激通过眼睛️——大脑皮层——下丘脑——松果腺和脑垂体——肾上腺,使肾上腺髓质分泌肾上腺素减少,使得心脏活动舒缩变慢,肌肉放松。

2、绿色能提高效益消除疲劳

与红色相反,绿色则可以提高人的听觉感受性,有利于思考的集中,提高工作效率,消除疲劳。还会使人减慢呼吸,降低血压,但是在精神病院里单调的颜色,特别是深绿色,容易引起精神病人的幻觉和妄想。

此外,其他颜色如橙色,在工厂中的机器上涂上橙色要比原来的灰色或黑色更好,可以使生产效率提高,事故率降低。可以把没有窗户的厂房墙壁涂成黄色,这样可以消除或减轻单调的手工劳动给工人带来的苦闷情绪。

PS:引用内容

色彩心理学,颜色对用户究竟有哪些影响

色彩心理学是十分重要的学科,在自然欣赏、社会活动方面,色彩在客观上是对人们的一种刺激和象征;在主观上又是一种反应与行为。色彩心理透过视觉开始,从知觉、感情而到记忆、思想、意志、象征等,其反应与变化是极为复杂的。色彩的应用,很重视这种因果关系,即由对色彩的经验积累而变成对色彩的心理规范,当受到什么刺激后能产生什么反应,都是色彩心理所要探讨的内容。

纯粹色彩科学称为色彩工程学,包括表色法、测色法、色彩计划设计、色彩调节、色彩管理等。包装色彩学是色彩工程学在包装色彩设计与色彩复制等方面的具体应用,是自然色彩、社会色彩和艺术色彩的有机统一。包装色彩学从包装色彩出发,系统地反映色彩形成与表述、色彩设计与再现的现象与规律,是色彩构成、色度学及印刷色彩学等有关内容的有机结合,是对包装色彩感性认识和理性分析的有机结合。

色彩影响神经和情绪

人们的切身体验表明,色彩对人们的心理活动有着重要影响,特别是和情绪有非常密切的关系。

在我们的日常生活、文娱活动、军事活动等等各种领域都有各种色彩影响着人们的心理和情绪。各种各样的人:古代的统治者、现代的企业家、艺术家、广告商等等都在自觉不自觉地应用色彩来影响、控制人们的心理和情绪。人们的衣、食、住、行也无时无刻不体现着对色彩的应用:穿上夏天的湖蓝色衣服会让人觉得清凉,人们把肉类调成酱红色,会更有食欲。

心理学家认为,人的第一感觉就是视觉,而对视觉影响最大的则是色彩。人的行为之所以受到色彩的影响,是因人的行为很多时候容易受情绪的支配。颜色源于大自然的先天的色彩,蓝色的天空、鲜红的血液、金色的太阳……看到这些与大自然先天的色彩一样的颜色,自然就会联想到与这些自然物相关的感觉体验,这是最原始的影响。这也可能是不同地域、不同国度和民族、不同性格的人对一些颜色具有共同感觉体验的原因。

比如,红色通常给人带来这些感觉:刺激、热情、积极、奔放和力量,还有庄严、肃穆、喜气和幸福等等。而绿色是自然界中草原和森林的颜色,有生命永久、理想、年轻、安全、新鲜、和平之意,给人以清凉之感。蓝色则让人感到悠远、宁静、空虚·寒冷等等。  随着社会的发展,影响人们对颜色感觉联想的物质越来越多,人们对于颜色的感觉也越来越复杂。比如,对于绿的感觉体验,经历过“文化大革命”与没有此经历的人的感觉是一不一样的。

色彩可影响人的心理和生理

对色彩与人的心理情绪关系的科学研究发现,色彩对人的心理和生理都会产生影响。 国外科学家研究发现:在红光的照射下,人们的脑电波和皮肤电活动都会发生改变。在红光的照射下,人们的听觉感受性下降,握力增加。同一物体在红光下看要比在蓝光下看显得大些。在红光下工作的人比一般工人反应快,可是工作效率反而低。

粉红色具有安抚情绪的效果

粉红色象征健康,是美国人常用的颜色,也是女性最喜欢的色彩,具有放松和安抚情绪的效果。有报告称,在美国西雅图的海军禁闭所、加利福尼亚州圣贝纳迪诺市青年之家、洛杉矶退伍军人医院的精神病房、南布朗克斯收容好动症儿童学校等处,都观察到了粉红色安定情绪的明显效果。例如把一个狂燥的病人或罪犯单独关在一间墙壁为粉红色的房间内,被关者很快就安静下来;一群小学生在内壁为粉红色的教室里,心率和血压有下降的趋势。

还有研究报告指出:在粉红色的环境中小睡一会儿,能使人感到肌肉软弱无力,而在蓝色中停留几秒钟,即可恢复。有人提出粉红色影响心理和生理的作用机制是:粉红色光刺激通过眼睛———大脑皮层———下丘脑———松果腺和脑垂体———肾上腺,使肾上腺髓质分泌肾上腺素减少,使得心脏活动舒缩变慢,肌肉放松。

绿色能提高效益消除疲劳

与红色相反,绿色则可以提高人的听觉感受性,有利于思考的集中,提高工作效率,消除疲劳。还会使人减慢呼吸,降低血压,但是在精神病院里单调的颜色,特别是深绿色,容易引起精神病人的幻觉和妄想。

此外,其他颜色如橙色,在工厂中的机器上涂上橙色要比原来的灰色或黑色更好,可以使生产效率提高,事故率降低。可以把没有窗户的厂房墙壁涂成黄色,这样可以消除或减轻单调的手工劳动给工人带来的苦闷情绪。

色彩改变世界——色彩和科学那些事儿

当光线照射到物体上时,人眼通过视网膜上细胞的帮助,视觉神经就会对其产生反应,即物体反射的光会作用于眼睛。不同颜色的光的波长不同,投射到视网膜上后产生的神经冲动也就不同。当神经冲动传输到大脑后会被记录下来,大脑对这些形形色色的神经冲动加以分析记忆后,脑海中就会呈现出这个五彩的世界。

在画师的调色盘中,色彩是艺术创造的灵感;在服装设计师的图纸上,色彩是体现个人审美的基石;而在科学家的实验室里,色彩却能帮助他们揭开许多大自然的秘密。

让细菌“穿上花衣服”

众所周知,人类的许多疾病都源于细菌,科学家也曾因识破不了它们的“庐山真面目”而伤透脑筋。细菌不但微小,肉眼无法看清,而且它们几近无色透明,即使在显微镜下,呈现的也只是白茫茫、模糊糊的一片。19 世纪,一位名叫柯赫的德国医生提出了用染料染色,让细菌“穿”上一件“花衣服”的办法去识别细菌。不可否认,这样的想法确实非常新颖,但做起来却并不容易,在前几次实验时,柯赫经历了多次失败。每当他把一滴染料溶液滴在光洁的细菌涂片上时,溶液的颜色就会迅速化开,并把涂片完全覆盖。但当他小心翼翼地用水冲洗时,细菌身上的那件“花衣服”,也会同时被流水带走。最终,柯赫找到了一种不会被水轻易吞噬的苯胺染料,细菌“穿”上这件不褪色的“蓝装”后,第一次在显微镜下向人类展现了它纤细清晰的身体。柯赫立即乘胜追击,没过多久,就把严重危害人类健康的结核病菌“缉拿归案”。

如今,柯赫发明的“细菌染色法”已被高度认可,成为人类医学史上一座光辉的里程碑。

科学家还发现,不同细菌对于色彩的爱好也不尽相同。例如,有一类细菌就特别爱“穿”紫衣服 — — 它们能被结晶紫染料和碘染成紫色,这在医学上叫做“固紫阳性菌”,对付它们的武器就是青霉素。而另一类“固紫阴性菌”却爱“穿”红衣服 — — 它们能被色素盐基性桃红精染成红色,氯霉素是它们的“克星”。通过了解细菌的这些特性,化验员就能侦察到究竟是哪一类细菌在患者体内为非作歹,并让医生“对菌下药”。

从雷诺实验到当代“风洞”

20世纪80年代初,物理学家雷诺突发奇想,在一根长长的装满流水的玻璃管里,注入了染色液体,随后竟发生了不可思议的一幕:玻璃管中出现了一条与水管轴平行的直线,随着水流逐渐加快,水流竟然剧烈地涌动起来。通过这个实验,雷诺发现液体、气体和流体三者的运动特性和速度有密切关系,而这个发现也成了当代流体力学的奠基石。

飞机在空中飞行时,空气其实也以同样的速度相对地流向飞机。因此,当一架飞机设计制造成功后,我们根本无需像过去那样进行冒险试飞,只要把做好的飞机模型放在一个巨大的鼓风机前就可以了。随着将鼓风机制造出的,与飞机飞行速度几乎相等的风速吹向飞机模型,设计师就可以精确地测算出飞机各个部分所承受的压力,从而对飞机进行改良加工乃至回炉再造。

当然,人们只能感受到这股强烈的“人造风”,根本看不见它的运行轨迹,这给实验数据的具体测算带来了不小的麻烦。设计师根据雷诺实验得出的启示,将煤油持续不断且均匀地喷射进鼓风机里,随之而出的空气就会变成有色烟雾,由此人们便能更加直观地感受到风的威力及其运行轨迹。而这,正是当代“风洞”的起源。

撒进大西洋里的染料加拿大北部地区是一片寒冷的不毛之地,尤其是在冬季,气温常常在-20℃以下。但在和加拿大纬度相仿的挪威,气候却相对暖和得多。按照常识来说,纬度相同的地域的气温应该是大致一样的,但为什么这两个地区的气候会有这么大的差别呢?据说,在大西洋里常年存在着一股强大的暖流,由此影响了挪威地区的气温,但暖流究竟来自何方,又去向何方呢?科学家对此一无所知,这也成了气候学中一个著名的悬案— — 墨西哥湾暖流之谜。

19 世纪时,德国有一位名叫斐雪的化学家,他在一次洗澡时,不小心弄脏了浴池 — — 池子里的清水忽然变成了黄色,而且还闪闪发光。原来,斐雪教授当时正在集中精力研究一种荧光染料,这种染料有一个特点,能在紫外线的“激发”下发出各色光辉,并具有很强的着色能力。斐雪教授由于头发上沾附了一点儿染料粒子,浴池也就变成了“大染缸”。

当代科学家由此得到灵感,决定在海洋上制造一个巨大的“染缸”,以揭开墨西哥湾暖流之谜。他们在大西洋里撒下了几吨荧光染料,使暖流印上了黄绿色的荧光“标记”。经过近几个月的跟踪研究,暖流的轨迹终于清晰地呈现在科学家眼前 — — 暖流发源于中美洲墨西哥湾,经过英国和斯堪的纳维亚半岛,穿过北海,进入巴伦支海,最后消失在北冰洋里。据测算,如果把这股暖流全转换成热能,就相当于在欧洲西北部的海岸线上,每隔一米都约有 6 万吨煤炭在燃烧。有了这么一根特大号的“天然暖气管”在,难怪挪威的气温要比加拿大高得多了。

红色的交通信号灯,蓝色的天空,绿色的植物 — —颜色一直在我们身边。这些看似不同的色彩常常会被我们忽略,甚至让我们忘记它们对人类历史发展所做出的贡献。当牛顿拿着三棱镜,成功地将阳光分解成赤橙黄绿青蓝紫七种颜色时,就已昭示了色彩与科学的密不可分。色彩改变了世界,而且这个进程仍在继续。

原文来自《科学24小时》

注:所有文章均由中国数字科技馆合作单位或个人授权发布,转载请注明出处。

色彩识人心理学有什么科学原理呢?

美国航 空 航 天 局进行过一次实验,在实验中发现使用带有颜色的光深入人体组织,能够促进伤口愈合、加快人类组织机构生长,最后研究证明颜色的波长可以影响人体化学机构,刺激自然生长愈合过程。美国科 学 家罗 伯 特.杰 拉德 研究验证:色彩和光线对人体的重大影响, 他将 犯 人 置于红光下,发现他们变得焦躁不安、激动,甚至具有攻 击 性;放在蓝光下则平静、镇定、血压降低。

关于zblog色彩科学和色彩科学是什么的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

取消
扫码支持 支付码