当前位置:首页 > ZBLOG > 正文

zblog变量(zblog应用)

本篇文章给大家谈谈zblog变量,以及zblog应用对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

无法使zblog的css调用有效

确认css地址正确,你直接用你的网址访问看是否能打开css样式一般提示下载,如果可以那就没问题,如果不行那就是css位置放得不对,还有Unix和linux系统是区分大小写的,例如A.css和a.css在win系统里是重复的在上述的两个系统里是不重复的可以并存的只是举例不一定是文件名有可能是文件夹名。

NLP基础知识和综述

一种流行的自然语言处理库、自带语料库、具有分类,分词等很多功能,国外使用者居多,类似中文的jieba处理库

为单词序列分配概率的模型就叫做语言模型。

通俗来说, 语言模型就是这样一个模型:对于任意的词序列,它能够计算出这个序列是一句话的概率。或者说语言模型能预测单词序列的下一个词是什么。

** n-gram Language Models **

N-gram模型是一种典型的统计语言模型(Language Model,LM),统计语言模型是一个基于概率的判别模型.统计语言模型把语言(词的序列)看作一个随机事件,并赋予相应的概率来描述其属于某种语言集合的可能性。给定一个词汇集合 V,对于一个由 V 中的词构成的序列S = ⟨w1, · · · , wT ⟩ ∈ Vn,统计语言模型赋予这个序列一个概率P(S),来衡量S 符合自然语言的语法和语义规则的置信度。用一句简单的话说,统计语言模型就是计算一个句子的概率大小的这种模型。

n-gram模型可以减轻单词序列没有在训练集中出现过而引起的问题,即数据稀疏问题

n-gram模型问题

对于n-gram模型的问题,这两页ppt说的很明白

N-gram模型基于这样一种假设,当前词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram(N=2)和三元的Tri-Gram(N=3).Bi-Gram所满足的假设是马尔科夫假设。

一般常用的N-Gram模型是Bi-Gram和Tri-Gram。分别用公式表示如下:

Bi-Gram:P(T)=p(w1|begin) p(w2|w1) p(w3|w2)***p(wn|wn-1)

Tri-Gram:P(T)=p(w1|begin1,begin2) p(w2|w1,begin1) p(w3|w2w1)***p(wn|wn-1,wn-2)

注意上面概率的计算方法:P(w1|begin)=以w1为开头的所有句子/句子总数;p(w2|w1)=w1,w2同时出现的次数/w1出现的次数。以此类推。

对于其中每项的计算举个例子:

由上可见Bi-Gram计算公式中的begin一般都是加个s标签。

N-gram存在的问题:

举一个小数量的例子进行辅助说明:假设我们有一个语料库(注意语料库),如下:

老鼠真讨厌,老鼠真丑,你爱老婆,我讨厌老鼠。

想要预测“我爱老”这一句话的下一个字。我们分别通过 bigram 和 trigram 进行预测。

1)通过 bigram,便是要对 P(w|老)进行计算,经统计,“老鼠”出现了3次,“老婆”出现了1次,通过最大似然估计可以求得P(鼠|老)=0.75,P(婆|老)=0.25, 因此我们通过 bigram 预测出的整句话为: 我爱老鼠。

2)通过 trigram,便是要对便是要对 P(w|爱老)进行计算,经统计,仅“爱老婆”出现了1次,通过最大似然估计可以求得 P(婆|爱 老)=1,因此我们通过trigram 预测出的整句话为: 我爱老婆。显然这种方式预测出的结果更加合理。

问题一:随着 n 的提升,我们拥有了更多的前置信息量,可以更加准确地预测下一个词。但这也带来了一个问题,当N过大时很容易出现这样的状况:某些n-gram从未出现过, 导致很多预测概率结果为0, 这就是稀疏问题。 实际使用中往往仅使用 bigram 或 trigram 。(这个问题可以通过平滑来缓解参考: )

问题二:同时由于上个稀疏问题还导致N-gram无法获得上下文的长时依赖。

问题三:n-gram 基于频次进行统计,没有足够的泛化能力。

n-gram总结:统计语言模型就是计算一个句子的概率值大小,整句的概率就是各个词出现概率的乘积,概率值越大表明该句子越合理。N-gram是典型的统计语言模型,它做出了一种假设,当前词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。它其中存在很多问题,再求每一个词出现的概率时,随着N的提升,能够拥有更多的前置信息量,可以使得当前词的预测更加准确,但是当N过大时会出现稀疏问题,导致很多词的概率值为0,为解决这一问题,因此常用的为bigram 或 trigram,这就导致N-gram无法获得上文的长时依赖。另一方面N-gram 只是基于频次进行统计,没有足够的泛化能力。

神经网络语言模型

2003年 Bengio 提出,神经网络语言模型( neural network language model, NNLM)的思想是提出词向量的概念,代替 ngram 使用离散变量(高维),采用连续变量(具有一定维度的实数向量)来进行单词的分布式表示,解决了维度爆炸的问题,同时通过词向量可获取词之间的相似性。

结合下图可知它所建立的语言模型的任务是根据窗口大小内的上文来预测下一个词,因此从另一个角度看它就是一个使用神经网络编码的n-gram模型。

它是一个最简单的神经网络,仅由四层构成,输入层、嵌入层、隐藏层、输出层。(从另一个角度看它就是一个使用神经网络编码的n-gram模型)

输入是单词序列的index序列,例如单词‘这’在字典(大小为∣V∣)中的index是10,单词‘是’的 index 是23,‘测’的 index 是65,则句子“这是测试”通过‘这是测’预测‘试’,窗口大小内上文词的index序列就是 10, 23, 65。嵌入层(Embedding)是一个大小为∣V∣×K的矩阵(注意:K的大小是自己设定的,这个矩阵相当于随机初始化的词向量,会在bp中进行更新,神经网络训练完成之后这一部分就是词向量),从中取出第10、23、65行向量拼成3×K的矩阵就是Embedding层的输出了。隐层接受拼接后的Embedding层输出作为输入,以tanh为激活函数,最后送入带softmax的输出层,输出概率,优化的目标是使得待预测词其所对应的softmax值最大。

缺点:因为这是通过前馈神经网络来训练语言模型,缺点显而易见就是其中的参数过多计算量较大,同时softmax那部分计算量也过大。另一方面NNLM直观上看就是使用神经网络编码的 n-gram 模型,也无法解决长期依赖的问题。

RNNLM

它是通过RNN及其变种网络来训练语言模型,任务是通过上文来预测下一个词,它相比于NNLM的优势在于所使用的为RNN,RNN在处理序列数据方面具有天然优势, RNN 网络打破了上下文窗口的限制,使用隐藏层的状态概括历史全部语境信息,对比 NNLM 可以捕获更长的依赖,在实验中取得了更好的效果。RNNLM 超参数少,通用性更强;但由于 RNN 存在梯度弥散问题,使得其很难捕获更长距离的依赖信息。

Word2vec中的CBOW 以及skip-gram,其中CBOW是通过窗口大小内的上下文预测中心词,而skip-gram恰恰相反,是通过输入的中心词预测窗口大小内的上下文。

Glove 是属于统计语言模型,通过统计学知识来训练词向量

ELMO 通过使用多层双向的LSTM(一般都是使用两层)来训练语言模型,任务是利用上下文来预测当前词,上文信息通过正向的LSTM获得,下文信息通过反向的LSTM获得,这种双向是一种弱双向性,因此获得的不是真正的上下文信息。

GPT是通过Transformer来训练语言模型,它所训练的语言模型是单向的,通过上文来预测下一个单词

BERT通过Transformer来训练MLM这种真正意义上的双向的语言模型,它所训练的语言模型是根据上下文来预测当前词。

以上部分的详细介绍在NLP之预训练篇中有讲到

语言模型的评判指标

具体参考:

Perplexity可以认为是average branch factor(平均分支系数),即预测下一个词时可以有多少种选择。别人在作报告时说模型的PPL下降到90,可以直观地理解为,在模型生成一句话时下一个词有90个合理选择,可选词数越少,我们大致认为模型越准确。这样也能解释,为什么PPL越小,模型越好。

一般用困惑度Perplexity(PPL)衡量语言模型的好坏,困惑度越小则模型生成一句话时下一个词的可选择性越少,句子越确定则语言模型越好。

简单介绍

Word2vec是一种有效创建词嵌入的方法,它自2013年以来就一直存在。但除了作为词嵌入的方法之外,它的一些概念已经被证明可以有效地创建推荐引擎和理解时序数据。在商业的、非语言的任务中。

背景

由于任何两个不同词的one-hot向量的余弦相似度都为0,多个不同词之间的相似度难以通过onehot向量准确地体现出来。

word2vec⼯具的提出正是为了解决上⾯这个问题。它将每个词表⽰成⼀个定⻓的向量,并使得这些向量能较好地表达不同词之间的相似和类⽐关系。

word2vec模型

word2vec⼯具包含了两个模型,即跳字模型(skip-gram)和连续词袋模型(continuous bag of words,CBOW)。word2vec的input/output都是将单词作为one-hot向量来表示,我们可以把word2vec认为是词的无监督学习的降维过程。

MaxEnt 模型(最大熵模型): 可以使用任意的复杂相关特征,在性能上最大熵分类器超过了 Byaes 分类器。但是,作为一种分类器模型,这两种方法有一个共同的缺点:每个词都是单独进行分类的,标记(隐状态)之间的关系无法得到充分利用,具有马尔可夫链的 HMM 模型可以建立标记之间的马尔可夫关联性,这是最大熵模型所没有的。

最大熵模型的优点:首先,最大熵统计模型获得的是所有满足约束条件的模型中信息熵极大的模型;其次,最大熵统计模型可以灵活地设置约束条件,通过约束条件的多少可以调节模型对未知数据的适应度和对已知数据的拟合程度;再次,它还能自然地解决统计模型中参数平滑的问题。

最大熵模型的不足:首先,最大熵统计模型中二值化特征只是记录特征的出现是否,而文本分类需要知道特征的强度,因此,它在分类方法中不是最优的;其次,由于算法收敛的速度较慢,所以导致最大熵统计模型它的计算代价较大,时空开销大;再次,数据稀疏问题比较严重。

CRF(conditional random field) 模型(条件随机场模型):首先,CRF 在给定了观察序列的情况下,对整个的序列的联合概率有一个统一的指数模型。一个比较吸引人的特性是其为一个凸优化问题。其次,条件随机场模型相比改进的隐马尔可夫模型可以更好更多的利用待识别文本中所提供的上下文信息以得更好的实验结果。并且有测试结果表明:在采用相同特征集合的条件下,条件随机域模型较其他概率模型有更好的性能表现。

CRF 可以用于构造在给定一组输入随机变量的条件下,另一组输出随机变量的条件概率分布模型。经常被用于序列标注,其中包括词性标注,分词,命名实体识别等领域。

建一个条件随机场,我们首先要定义一个特征函数集,每个特征函数都以整个句子s,当前位置i,位置i和i-1的标签为输入。然后为每一个特征函数赋予一个权重,然后针对每一个标注序列l,对所有的特征函数加权求和,必要的话,可以把求和的值转化为一个概率值。

CRF 具有很强的推理能力,并且能够使用复杂、有重叠性和非独立的特征进行训练和推理,能够充分地利用上下文信息作为特征,还可以任意地添加其他外部特征,使得模型能够 获取的信息非常丰富。

CRF 模型的不足:首先,通过对基于 CRF 的结合多种特征的方法识别英语命名实体的分析,发现在使用 CRF 方法的过程中,特征的选择和优化是影响结果的关键因素,特征选择问题的好与坏,直接决定了系统性能的高低。其次,训练模型的时间比 MaxEnt 更长,且获得的模型很大,在一般的 PC 机上无法运行。

潜在语义分析(Latent Semantic Analysis,LSA)模型

在潜在语义分析(LSA)模型首先给出了这样一个 ‘‘分布式假设” :一个 单词的属性是由它所处的环境刻画的。这也就意味着如果两个单词在含义上比较接近,那么它们也会出现在相似的文本中,也就是说具有相似的上下文。

LSA模型在构建好了单词-文档矩阵之后,出于以下几种可能的原因,我们会使用奇异值分解(Singular Value Decomposition,SVD) 的方法来寻找该矩阵的一个低阶近似。

概率潜在语义分析(Probability Latent Semantic Analysis ,PLSA)模型

概率潜在语义分析(PLSA)模型其实是为了克服潜在语义分析(LSA)模型存在的一些缺点而被提出的。LSA 的一个根本问题在于,尽管我们可以把 U k 和 V k 的每一列都看成是一个话题,但是由于每一列的值都可以看成是几乎没有限制的实数值,因此我们无法去进一步解释这些值到底是什么意思,也更无法从概率的角度来理解这个模型。

PLSA模型则通过一个生成模型来为LSA赋予了概率意义上的解释。该模型假设,每一篇文档都包含一系列可能的潜在话题,文档中的每一个单词都不是凭空产生的,而是在这些潜在的话题的指引下通过一定的概率生成的。

在 PLSA 模型里面,话题其实是一种单词上的概率分布,每一个话题都代表着一个不同的单词上的概率分布,而每个文档又可以看成是话题上的概率分布。每篇文档就是通过这样一个两层的概率分布生成的,这也正是PLSA 提出的生成模型的核心思想。

PLSA 通过下面这个式子对d和 w 的联合分布进行了建模:

该模型中的 *z * 的数量是需要事先给定的一个超参数。需要注意的是,上面这 个式子里面给出了 P (w, d ) 的两种表达方式,在前一个式子里, *d * 和 w 都是在给定 *z * 的前提下通过条件概率生成出来的,它们的生成方式是相似的,因此是 ‘‘对称’’ 的;在后一个式子里,首先给定 d ,然后根据 P ( z | d ) 生成可能的话题 z ,然后再根据 P (w| z ) 生成可能的单词 w,由于在这个式子里面单词和文档的生成并不相似, 所以是 ‘‘非对称’’ 的。

上图给出了 PLSA 模型中非对称形式的 Plate Notation表示法。其中d表示 一篇文档,z 表示由文档生成的一个话题,w 表示由话题生成的一个单词。 在这个模型中, d和w 是已经观测到的变量,而z是未知的变量(代表潜在的话题)。

容易发现,对于一个新的文档而言,我们无法得知它对应的 P ( d ) 究竟是什么, 因此尽管 PLSA 模型在给定的文档上是一个生成模型,它却无法生成新的未知的文档。该模型的另外的一个问题在于,随着文档数量的增加, P ( z | d ) 的参数也会随着线性增加,这就导致无论有多少训练数据,都容易导致模型的过拟合问题。这两点成为了限制 PLSA 模型被更加广泛使用的两大缺陷。

潜在狄利克雷分配(Latent Dirichlet Analysis , LDA)模型

为了解决 PLSA 模型中出现的过拟合问题,潜在狄利克雷分配(LDA)模型被 Blei 等人提出,这个模型也成为了主题模型这个研究领域内应用最为广泛的模 型。LDA就是在PLSA的基础上加层贝叶斯框架,即LDA就是PLSA的贝叶斯版本(正因为LDA被贝叶斯化了,所以才需要考虑历史先验知识,才加的两个先验参数)。

从上一节我们可以看到,在 PLSA 这个模型里,对于一个未知的新文档 d ,我们对于 P ( d ) 一无所知,而这个其实是不符合人的经验的。或者说,它没有去使用本来可以用到的信息,而这部分信息就是 LDA 中所谓的先验信息。

具体来说,在 LDA 中,首先每一个文档都被看成跟有限个给定话题中的每一个存在着或多或少的关联性,而这种关联性则是用话题上的概率分布来刻画的, 这一点与 PLSA 其实是一致的。

但是在 LDA 模型中,每个文档关于话题的概率分布都被赋予了一个先验分布,这个先验一般是用稀疏形式的狄利克雷分布表示的。 这种稀疏形式的狄利克雷先验可以看成是编码了人类的这样一种先验知识:一般而言,一篇文章的主题更有可能是集中于少数几个话题上,而很少说在单独一篇文章内同时在很多话题上都有所涉猎并且没有明显的重点。

此外,LDA 模型还对一个话题在所有单词上的概率分布也赋予了一个稀疏形式的狄利克雷先验,它的直观解释也是类似的:在一个单独的话题中,多数情况是少部分(跟这个话题高度相关的)词出现的频率会很高,而其他的词出现的频率则明显较低。这样两种先验使得 LDA 模型能够比 PLSA 更好地刻画文档-话题-单词这三者的关系。

事实上,从 PLSA 的结果上来看,它实际上相当于把 LDA 模型中的先验分布转变为均匀分布,然后对所要求的参数求最大后验估计(在先验是均匀分布的前提下,这也等价于求参数的最大似然估计) ,而这也正反映出了一个较为合理的先验对于建模是非常重要的。

分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。

现有的分词算法可分为三大类:基于字符串匹配的分词方法、基于理解的分词方法和基于统计的分词方法。

按照是否与词性标注过程相结合,又可以分为单纯分词方法和分词与标注相结合的一体化方法。

中文分词根据实现原理和特点,主要分为以下2个类别:

(1)基于词典分词算法

也称字符串匹配分词算法。该算法是按照一定的策略将待匹配的字符串和一个已建立好的“充分大的”词典中的词进行匹配,若找到某个词条,则说明匹配成功,识别了该词。常见的基于词典的分词算法分为以下几种:正向最大匹配法、逆向最大匹配法和双向匹配分词法等。

基于词典的分词算法是应用最广泛、分词速度最快的。很长一段时间内研究者都在对基于字符串匹配方法进行优化,比如最大长度设定、字符串存储和查找方式以及对于词表的组织结构,比如采用TRIE索引树、哈希索引等。

(2)基于统计的机器学习算法

这类目前常用的是算法是HMM、CRF(条件随机场)、SVM、深度学习等算法,比如stanford、Hanlp分词工具是基于CRF算法。以CRF为例,基本思路是对汉字进行标注训练,不仅考虑了词语出现的频率,还考虑上下文,具备较好的学习能力,因此其对歧义词和未登录词的识别都具有良好的效果。

常见的分词器都是使用机器学习算法和词典相结合,一方面能够提高分词准确率,另一方面能够改善领域适应性。

随着深度学习的兴起,也出现了 基于神经网络的分词器 ,例如有人员尝试使用双向LSTM+CRF实现分词器, 其本质上是序列标注 ,所以有通用性,命名实体识别等都可以使用该模型,据报道其分词器字符准确率可高达97.5%。算法框架的思路与论文《Neural Architectures for Named Entity Recognition》类似,利用该框架可以实现中文分词,如下图所示:

首先对语料进行字符嵌入,将得到的特征输入给双向LSTM,然后加一个CRF就得到标注结果。

目前中文分词难点主要有三个:

1、分词标准 :比如人名,在哈工大的标准中姓和名是分开的,但在Hanlp中是合在一起的。这需要根据不同的需求制定不同的分词标准。

2、歧义 :对同一个待切分字符串存在多个分词结果。

歧义又分为组合型歧义、交集型歧义和真歧义三种类型。

一般在搜索引擎中,构建索引时和查询时会使用不同的分词算法。常用的方案是,在索引的时候使用细粒度的分词以保证召回,在查询的时候使用粗粒度的分词以保证精度。

3、新词 :也称未被词典收录的词,该问题的解决依赖于人们对分词技术和汉语语言结构的进一步认识。

典型的文本分类过程可以分为三个步骤:

1. 文本表示(Text Representation)

这一过程的目的是把文本表示成分类器能够处理的形式。最常用的方法是向量空间模型,即把文本集表示成词-文档矩阵,矩阵中每个元素代表了一个词在相应文档中的权重。选取哪些词来代表一个文本,这个过程称为特征选择。常见的特征选择方法有文档频率、信息增益、互信息、期望交叉熵等等。为了降低分类过程中的计算量,常常还需要进行降维处理,比如LSI。

2. 分类器构建(Classifier Construction)

这一步骤的目的是选择或设计构建分类器的方法。不同的方法有各自的优缺点和适用条件,要根据问题的特点来选择一个分类器。我们会在后面专门讲述常用的方法。选定方法之后,在训练集上为每个类别构建分类器,然后把分类器应用于测试集上,得到分类结果。

3. 效果评估(Classifier Evaluation)

在分类过程完成之后,需要对分类效果进行评估。评估过程应用于测试集(而不是训练集)上的文本分类结果,常用的评估标准由IR领域继承而来,包括查全率、查准率、F1值等等。

1. Rocchio方法

每一类确定一个中心点(centroid),计算待分类的文档与各类代表元间的距离,并作为判定是否属于该类的判据。Rocchio方法的特点是容易实现,效率高。缺点是受文本集分布的影响,比如计算出的中心点可能落在相应的类别之外。

2. 朴素贝叶斯(naïve bayes)方法

将概率论模型应用于文档自动分类,是一种简单有效的分类方法。使用贝叶斯公式,通过先验概率和类别的条件概率来估计文档对某一类别的后验概率,以此实现对此文档所属类别的判断。

3. K近邻(K-Nearest Neightbers, KNN)方法

从训练集中找出与待分类文档最近的k个邻居(文档),根据这k个邻居的类别来决定待分类文档的类别。KNN方法的优点是不需要特征选取和训练,很容易处理类别数目多的情况,缺点之一是空间复杂度高。KNN方法得到的分类器是非线性分类器。

4. 支持向量机(SVM)方法

对于某个类别,找出一个分类面,使得这个类别的正例和反例落在这个分类面的两侧,而且这个分类面满足:到最近的正例和反例的距离相等,而且是所有分类面中与正例(或反例)距离最大的一个分类面。SVM方法的优点是使用很少的训练集,计算量小;缺点是太依赖于分类面附近的正例和反例的位置,具有较大的偏执。

文本聚类过程可以分为3个步骤:

1. 文本表示(Text Representation)

把文档表示成聚类算法可以处理的形式。所采用的技术请参见文本分类部分。

2. 聚类算法选择或设计(Clustering Algorithms)

算法的选择,往往伴随着相似度计算方法的选择。在文本挖掘中,最常用的相似度计算方法是余弦相似度。聚类算法有很多种,但是没有一个通用的算法可以解决所有的聚类问题。因此,需要认真研究要解决的问题的特点,以选择合适的算法。后面会有对各种文本聚类算法的介绍。

3. 聚类评估(Clustering Evaluation)

选择人工已经分好类或者做好标记的文档集合作为测试集合,聚类结束后,将聚类结果与已有的人工分类结果进行比较。常用评测指标也是查全率、查准率及F1值。

1.层次聚类方法

层次聚类可以分为两种:凝聚(agglomerative)层次聚类和划分(divisive)层次聚类。凝聚方法把每个文本作为一个初始簇,经过不断的合并过程,最后成为一个簇。划分方法的过程正好与之相反。层次聚类可以得到层次化的聚类结果,但是计算复杂度比较高,不能处理大量的文档。

2.划分方法

k-means算法是最常见的划分方法。给定簇的个数k,选定k个文本分别作为k个初始簇,将其他的文本加入最近的簇中,并更新簇的中心点,然后再根据新的中心点对文本重新划分;当簇不再变化时或经过一定次数的迭代之后,算法停止。k-means算法复杂度低,而且容易实现,但是对例外和噪声文本比较敏感。另外一个问题是,没有一个好的办法确定k的取值。

3.基于密度的方法

为了发现任意形状的聚类结果,提出了基于密度的方法。这类方法将簇看作是数据空间中被低密度区域分割开的高密度区域。常见的基于密度的方法有DBSCAN, OPTICS, DENCLUE等等。

4.神经网络方法

神经网络方法将每个簇描述为一个标本,标本作为聚类的"原型",不一定对应一个特定的数据,根据某些距离度量,新的对象被分配到与其最相似的簇中。比较著名的神经网络聚类算法有:竞争学习(competitive learing)和自组织特征映射(self-organizing map)[Kohonen, 1990]。神经网络的聚类方法需要较长的处理时间和复杂的数据复杂性,所以不适用于大型数据的聚类。

当输入一行字按回车后这行字的内容才会进入键盘缓冲区吗,还是在输入的时候它们就已经进入键盘缓冲区了?

getchar有一个int型的返回值.当程序调用getchar时.程序就等着用户按键.用户输入的字符被存放在键盘缓冲区中.直到用户按回车为止(回车字符也放在缓冲区中).当用户键入回车之后,getchar才开始从stdin流中每次读入一个字符.getchar函数的返回值是用户输入的第一个字符的ASCII码,如出错返回-1,且将用户输入的字符回显到屏幕.如用户在按回车之前输入了不止一个字符,其他字符会保留在键盘缓存区中,等待后续getchar调用读取.也就是说,后续的getchar调用不会等待用户按键,而直接读取缓冲区中的字符,直到缓冲区中的字符读完为后,才等待用户按键.

getch与getchar基本功能相同,差别是getch直接从键盘获取键值,不等待用户按回车,只要用户按一个键,getch就立刻返回, getch返回值是用户输入的ASCII码,出错返回-1.输入的字符不会回显在屏幕上.getch函数常用于程序调试中,在调试时,在关键位置显示有关的结果以待查看,然后用getch函数暂停程序运行,当按任意键后程序继续运行.

程序例:

#include stdio.h

int main(void)

{

int c;

/* Note that getchar reads from stdin and

is line buffered; this means it will

not return until you press ENTER. */

while ((c = getchar()) != '\n')

printf("%c", c);

return 0;

}

注:可以利用getchar()函数让程序调试运行结束后等待编程者按下键盘才返回编辑界面,用法:在主函数结尾,return 0;之前加上getchar();即可

关于文件结束符EOF

EOF 是 End Of File 的缩写。

在 C 语言中,它是在标准库中定义的一个宏。

人们经常误认为 EOF 是从文件中读取的一个字符(牢记)。其实,EOF 不是一个字符,它被定义为是 int 类型的一个负数(比如 -1)。EOF 也不是文件中实际存在的内容。EOF 也不是只表示读文件到了结尾这一状态(这种状态可以用 feof() 来检测),它还能表示 I/O 操作中的读、写错误(通常可以用 ferror() 来检测)以及其它一些关联操作的错误状态。

getchar 返回EOF如果读到文件末

大师级经典的著作,要字斟句酌的去读,去理解。以前在看KR的The C Programming Language(SecondEdition)

第1.5节的字符输入/输出,被getchar()和EOF所迷惑了。可能主要还是由于没有搞清楚getchar()的工作原理和EOF的用法。因此,感觉很有必要总结一下,不然,很多琐碎的知识点长时间过后就会淡忘的,只有写下来才是最好的方法。

其实,getchar()最典型的程序也就几行代码而已。本人所用的环境是DebianGNU/Linux,在其他系统下也一样。

一、getchar的两点总结:

1.getchar是以行为单位进行存取的。

当用getchar进行输入时,如果输入的第一个字符为有效字符(即输入是文件结束符EOF,Windows下为组合键Ctrl+Z,Unix/Linux下为组合键Ctrl+D),那么只有当最后一个输入字符为换行符'\n'(也可以是文件结束符EOF,EOF将在后面讨论)时,getchar才会停止执行,整个程序将会往下执行。譬如下面程序段:

while((c =getchar())!=EOF){

putchar(c);

}

执行程序,输入:abc,然后回车。则程序就会去执行puchar(c),然后输出abc,这个地方不要忘了,系统输出的还有一个回车。然后可以继续输入,再次遇到换行符的时候,程序又会把那一行的输入的字符输出在终端上。

对于getchar,肯定很多初学的朋友会问,getchar不是以字符为单位读取的吗?那么,既然我输入了第一个字符a,肯定满足while循环(c = getchar()) != EOF的条件阿,那么应该执行putchar(c)在终端输出一个字符a。不错,我在用getchar的时候也是一直这么想的,但是程序就偏偏不着样执行,而是必需读到一个换行符或者文件结束符EOF才进行一次输出。

对这个问题的一个解释是,在大师编写C的时候,当时并没有所谓终端输入的概念,所有的输入实际上都是按照文件进行读取的,文件中一般都是以行为单位的。因此,只有遇到换行符,那么程序会认为输入结束,然后采取执行程序的其他部分。同时,输入是按照文件的方式存取的,那么要结束一个文件的输入就需用到EOF(Enf Of File). 这也就是为什么getchar结束输入退出时要用EOF的原因。

2.getchar()的返回值一般情况下是字符,但也可能是负值,即返回EOF。

这里要强调的一点就是,getchar函数通常返回终端所输入的字符,这些字符系统中对应的ASCII值都是非负的。因此,很多时候,我们会写这样的两行代码:

char c;

c =getchar();

这样就很有可能出现问题。因为getchar函数除了返回终端输入的字符外,在遇到Ctrl+D(Linux下)即文件结束符EOF时,getchar()的返回EOF,这个EOF在函数库里一般定义为-1。因此,在这种情况下,getchar函数返回一个负值,把一个负值赋给一个char型的变量是不正确的。为了能够让所定义的变量能够包含getchar函数返回的所有可能的值,正确的定义方法如下(KR C中特别提到了这个问题):

int c;

c =getchar();

本文来自CSDN博客,转载请标明出处:

ZBLOG中如何修改 ,或者这个变量 保存在哪个文件

修改模板后统计代码不显示了,不论是在“网站设置管理”里添加还是在catalog.html 、default.html 、search.html 、single.html 、tags.html 里设置统统不显示,统计记录里也无法运行,仔细查看default.html代码,发现底部代码好像变样了,找到备份,把如下代码重新拷回:

script language="JavaScript" type="text/javascript"

$(document).ready(function(){

try{

var elScript = document.createElement("script");

elScript.setAttribute("language", "JavaScript");

elScript.setAttribute("src", "#ZC_BLOG_HOST#function/c_html_js.asp?act=batch"+unescape("%26")+"view=" + escape(strBatchView)+unescape("%26")+"inculde=" + escape(strBatchInculde)+unescape("%26")+"count=" + escape(strBatchCount));

document.getElementsByTagName("body")[0].appendChild(elScript);

}

catch(e){};

});

/script

/body

/html

之后在上述5个页面中添加统计代码,位置在

div id="Footer"

p在这个位置添加自己的统计代码例如:script type="text/javascript" src=""/scriptnoscripta href=""img src=""//a/noscript

/p

/div

/div

之后问题解决,效果请看

Causal Effect Estimation

下述的内容给予假设的最基本的Causal Graph

其DAG关系如下

, ,(即Z为confounder)。

1、原生的 并不能直接表示因果效应。

可以被解释为很多变量interaction的结果。其中一些是因果关系(causal),而另一些只是单纯的观察性关联(purely observational)。We can say that any statistically meaningful association is the result of a causal relationship somewhere in the system , but not necessarily of the causal effect of interest

2、定义因果效应 。

定义: ,如果我们外生地(exogenous)干涉X,能对Y造成影响,则这部分影响是我们关心的应果效应。这意味着我们必须在系统之外(outside the system)来改变X,从而影响Y。外生地改变X是为了避免系统其他变量带来的影响。

3、如何得到 :

4、得到泛化的Adjustment Formula:(即通过pre-intervention的概率分布,进行adjust,以获得causal effect)

,PA为X的父节点

即,找到X的父节点PA,然后conditioning on it,得到依赖PA的条件概率 ,再根据 计算其加权平均即可。

所以,其本质就是考虑其Parents的不同,获得加权平均。 由于直接计算P(Y|X)的话,未考虑其Parents,很可能得出相反的结论,在[4]中的例子也有讲述。

5、别的手段:通过Randomized获得Causal Effect

其实我们进行完全随机试验,就是通过实验设计本身,消除指向X的Z。即实验组对照组仅有X不同。其他都是相同的,相当于X不受系统中任意的其他变量定义。这本身就是种外生地(exogenous)地修改X的手段。

我们将上述的问题继续泛化一下。如果我们要通过Causal Graph得到 ,我们需要Conditioning on哪些变量?

Prediction: Predict Y after observing X = x

Causation: Predict Y after setting X = x.

根据上述结论Backdoor Criterion,我们可以得到正确估计 的方法:

【1】

而在Prediction中:

【2】

注意与【1】与【2】的区别。(根据Backdoor-Criterion,明显这里Z与X不是独立的,所以两者不相等)

其实很多人考虑在现实生产中,在大数据覆盖了方方面面的情况下,我们是否已经可以对万物都建模,都用特征描述了,那Confounding是否存在,或者以什么方式存在?

这个问题其实非常简单,那就是unobserved feature。举个例子,我们的特征 包含用户的历史浏览点击记录,我们有个没有观测到的特征,比如用户近期经济状况 。很好理解, 不仅影响了用户的点击行为 ,同时也影响了用户的历史反馈特征 ,而且,这样的特征通常我们都没有观察到,所以,我们的估计,潜在都存在Confounding Bias。(由于大部分系统是一个循环的生态系统,所以这些bias在某种程度也导致了推荐所谓的同质化,马太效应等等)

Feedback Loop Amplifies Biases[10]

Refer

[1] Causal Effect:

目录:

见:

见:

之前对bias有些粗浅的讨论: Causal Bias

[2]D-Seperation

见:

简略:

[4]Causal Effect定义Intervention

见:

简略:

[5]Backdoor Criterion

见:

简略:

[6] Causal Inference CMU

estimator的选择见2.1章节,在prediction中,bias and variance are not equally important.。优化loss function的时候,其实也同时优化了bias and variance。

[7]在 小样本AB test 中,我们可以用随机AA实验 + 分层显著性校验,校验每一个分层的 是否有显著性差异。

interventional distribution:Identification of Conditional Interventional Distributions

[8]Nonparametric_regression

[Linear regression] is a restricted case of nonparametric regression where is assumed to be affine.

[9]Semiparametric_model

[10]

Feedback Loop and Bias Amplification in Recommender Systems

zblog不能加载css,兼容问题。

#ZC_BLOG_HOST#THEMES/default/STYLE/ayt/css.css##内的变量有一个值,按习惯,一般是在数据库的配置文件表或外部的文本式的配置文件里的,这个ZC_BLOG_HOST的值决定了CSS文件的相对或绝对路径。

关于zblog变量和zblog应用的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

取消
扫码支持 支付码